Design and Optimization of Input-Output Block using Graphene Nano-ribbon Transistors

نویسندگان

چکیده مقاله:

In the electronics industry, scaling and optimization is final goal. But, according to ITRS predictions, silicon as basic material for semiconductors, is facing physical limitation and approaching the end of the path. Therefore, researchers are looking for the silicon replacement. Until now, carbon and its allotrope, graphene, look to be viable candidates. Among different circuits, IO block is a needed ingredient for electronic systems and needs to be re-designed and optimized. In this paper, goal is feasibility analysis and design of IO blocks using graphene field effect transistors. Using these transistors, each ingredient is designed, simulated and analyzed using the HSPICE tool. Then, these ingredients are combined together and the graphene-based IO block is implemented. Similar to graphene IO, silicon- based IO block is also designed and results are compared. It indicated that propagation delay is 299.9ps with 10% edge roughness, which is 32% faster compared to silicon counterpart.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene Nano-Ribbon Electronics

We have fabricated graphene nano-ribbon field-effect transistor devices and investigated their electrical properties as a function of ribbon width. Our experiments show that the resistivity of a ribbon increases as its width decreases, indicating the impact of edge states. Analysis of temperature dependent measurements suggests a finite quantum confinement gap opening in narrow ribbons. The ele...

متن کامل

synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants

we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.

15 صفحه اول

Graphene Nano-Ribbon Field Effect Transistor under Different Ambient Temperatures

This paper is the first study on the impact of ambient temperature on the electrical characteristics and high frequency performances of double gate armchair graphene nanoribbon field effect transistor (GNRFET). The results illustrate that the GNRFET under high temperature (HT-GNRFET) has the highest cut-off frequency, lowest sub-threshold swing, lowest intrinsic delay and power delay product co...

متن کامل

graphene nano-ribbon field effect transistor under different ambient temperatures

abstract: this paper is the first study on the impact of ambient temperature on the electrical characteristics and high frequency performances of double gate armchair graphene nanoribbon field effect transistor (gnrfet). the results illustrate that the gnrfet under high temperature (ht-gnrfet) has the highest cut-off frequency, lowest sub-threshold swing, lowest intrinsic delay and power delay ...

متن کامل

Modeling and Optimization of Mechanical Properties of PA6/NBR/Graphene Nanocomposite Using Central Composite Design

Thermoplastic elastomer of PA6/NBR reinforced by various nanoparticles have wide application in many industries. The properties of these materials depend on PA6, NBR, and nanoparticle amount and characteristics. In this study, the simultaneous effect of NBR and graphene nanoparticle content on mechanical, thermal properties, and morphology of PA6/NBR/Graphene nanocomposites investigated by Cent...

متن کامل

Design Input CCITT - SDL Design Output CCITT - SDL Design output Acquiring design rules Design input

The prime goals of this project are (1) developing an automatic software design system that aims at reproducing human cognitive processes; (2) automating software design by shifting the prototyping and modi cations to higher design levels rather than source code. This paper introduces an improved version of the experimental expert system CREATOR2/3 for automatic design of switching software. Ba...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 2

صفحات  0- 0

تاریخ انتشار 2018-12

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023